CAACS: A Carbon Aware Ant Colony System

Marina Lin

Mentor: Professor Laura P. Schaposnik University of Illinois at Chicago

MIT PRIMES Conference

October 13, 2024

Sustainability

Sustainability

How can we balance multiple objectives of sustainability?

Generalized Traveling Salesman Problem (GTSP)

Problem Statement: Consider an undirected graph G = (V, E) where the vertex set V is partitioned into n distinct clusters C_1, C_2, \ldots, C_n . The GTSP searches for the shortest Hamiltonian cycle such that exactly one vertex from each cluster is visited.

Generalized Traveling Salesman Problem (GTSP)

Problem Statement: Consider an undirected graph G = (V, E) where the vertex set V is partitioned into n distinct clusters C_1, C_2, \ldots, C_n . The GTSP searches for the shortest Hamiltonian cycle such that exactly one vertex from each cluster is visited.

Applications: Logistics, Microchip Design, UPS Package Delivery, Medical Supplies Distribution, and a Subproblem of DNA Sequencing!

Solutions to GTSP

Solutions to GTSP

Key Mechanisms

- The pheromone trails τ_{ij} guide the ants.
- Each ant constructs a complete solution by selecting components from the feasible set N_i .
- Multiple ants explore different paths, and the algorithm identifies the path with the minimum cost.

Carbon Model for Vehicles

• Transportation accounts for 23% of the world's carbon emissions.

Carbon Model for Vehicles

- Transportation accounts for 23% of the world's carbon emissions.
- Emissions (in kgCO₂) depend on various factors:
 - Surface condition of the traveled route
 - Conveyance type
 - Weight load
 - Speed, etc.

Carbon Model for Vehicles

- Transportation accounts for 23% of the world's carbon emissions.
- Emissions (in kgCO₂) depend on various factors:
 - Surface condition of the traveled route
 - Conveyance type
 - Weight load
 - Speed, etc.
- It's important to consider these factors in our model.

Algorithm Overview: Stages of the CAACS Approach

• Stage I: Finding a Path — A valid GTSP solution is found.

Algorithm Overview: Stages of the CAACS Approach

- Stage I: Finding a Path A valid GTSP solution is found.
- Stage II: Updating the Graph Adjusting the pheromone concentration based on the paths taken.

Algorithm Overview: Stages of the CAACS Approach

- Stage I: Finding a Path A valid GTSP solution is found.
- Stage II: Updating the Graph Adjusting the pheromone concentration based on the paths taken.
- Representation of Nodes and Clusters
 - Nodes in the GTSP graph are represented as 2×2 diamonds on a grid.
 - Each color represents a different cluster.

Figure 1: Example graph with a valid GTSP solution.

To simultaneously minimize cost and emissions, we introduce a novel emission hyperparameter E_{ij} .

$$E_{ij} = A^{1-rac{c(i,j)}{c_{\max}}}$$

where c represents the carbon matrix, and

- c(i,j): Carbon emission associated with path (i,j).
- c_{max}: Maximum carbon emission among all possible paths.
- A: Scaling factor that adjusts the influence of emissions on path selection.

Stage I: Finding a Path

Exploitation: An ant moving from node *i* to node *j* follows:

Figure 2: Example of Exploitation.

Stage I: Finding a Path

Exploration: If $r > r_0$, the node $J \in \mathcal{N}_i(t)$, is selected via the probability:

Figure 3: Example of Exploration.

12 / 20

Stage II: Updating the Graph

Carbon Aware Local Update Rule: The local update rule is applied immediately after an ant traverses an edge and is given by:

$$\tau_{ij}(t) \leftarrow (1 - \rho_L)\tau_{ij}(t) + \rho_L \tau_0 E_{ij}$$
Reduction
Reinforcement

Stage II: Updating the Graph

Carbon Aware Local Update Rule: The local update rule is applied immediately after an ant traverses an edge and is given by:

$$au_{ij}(t) \leftarrow (1 -
ho_L) au_{ij}(t) +
ho_L au_0 E_{ij}$$

Reduction Reinforcement
 Encourages exploration by reducing the pheromone level on the recently used edge and adds carbon aware reinforcement.

Carbon Aware Global Update Rule: The global update rule is applied after all ants have completed their tours and is given by:

Shortest Cost Heuristic

$$\tau_{ij}(t+1) = (1-\rho_G)\tau_{ij}(t) + \rho_G \Delta \tau_{ij}(t) E_{ij}$$

Reduction

Reinforcement

Carbon Aware Global Update Rule: The global update rule is applied after all ants have completed their tours and is given by:

$$\tau_{ij}(t+1) = \underbrace{(1-\rho_G)\tau_{ij}(t)}_{\text{Reduction}} + \underbrace{\rho_G \Delta \tau_{ij}(t)}_{\text{Reinforcement}} E_{ij}$$

• Reinforces the best solutions found so far for future iterations.

.

Evolution of Path Discovery

Figure 4: Illustration of Path Discovery.

Time Complexity

Figure 5: (a) Number of Nodes. (b) Number of Clusters. (c) Normalization.

Results: Empirically showed *linear time complexity*.

Number of Ants

Figure 6: (a) **Quality of Solution:** Percentage error in cost compared to the optimal solution as the number of ants increases. (b) **Runtime:** Number of Iterations as the number of ants increases.

Application: Sustainable Delivery

Figure 7: The final path generated by the algorithm on a grid with 1097 cities in 48 continental U.S. states and the District of Colombia (DC).

I would like to thank

- My mentor Prof. Laura Schaposnik for her support and guidance throughout this project
- Dr. Etingof, Dr. Gerovitch, Dr. Khovanova, and the MIT PRIMES-USA organizers for making this amazing math research opportunity possible!

References

Das, Madhushree et al. (2023). "A Quantum-inspired Ant Colony Optimization for solving a sustainable four-dimensional traveling salesman problem under type-2 fuzzy variable". In: Advanced Engineering Informatics 55, p. 101816. ISSN: 1474-0346. Ghasri, Mehdi (2024). Ant Colony Optimization Algorithm with Mutation Operator (AC). MATLAB Central File Exchange. Micheli, Guido J.L. and Fabio Mantella (2018). "Modelling an environmentally-extended inventory routing problem with demand uncertainty and a heterogeneous fleet under carbon control policies". In: International Journal of Production Economics 204, pp. 316–327. ISSN: 0925-5273.

Pop, Petrică C. et al. (2024). "A comprehensive survey on the generalized traveling salesman problem". In: *European Journal of Operational Research* 314.3, pp. 819–835. ISSN: 0377-2217.